The isoscalar factors of $\mathrm{O}_{6} \times \mathrm{O}_{6}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 221495
(http://iopscience.iop.org/0305-4470/22/10/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:42

Please note that terms and conditions apply.

The isoscalar factors of $\mathrm{O}_{6} \times \mathrm{O}_{6}$

Qi-Zhi Han \dagger, En-Guang Zhao $\ddagger \S$ and Hong-Zhou Sun§ $\|$
\dagger Department of Physics, Peking University, Beijing, People's Republic of China
\ddagger Division of Theoretical Physics CCAST (World Laboratory), Beijing, People's Repulic of China
§ Institute of Theoretical Physics, Academic Sinica, Beijing, People's Republic of China
|| Department of Physics, Tsinghua University, Beijing, People's Republic of China

Received 5 August 1988

Abstract

Using the tensor basis and utilising the Wigner-Eckart theorem, we obtain the matrix representations $\langle\mu 00\rangle$ and $\langle\mu 10\rangle$ of $\mathrm{O}_{6}(S T) \supset \mathrm{O}_{3}(S) \times \mathrm{O}_{3}(T)$. The isoscalar factors of $\mathrm{O}_{6}(S T) \times \mathrm{O}_{6}(S T)=\mathrm{O}_{6}(S T)=\mathrm{O}_{3}(S) \times \mathrm{O}_{3}(T)$ are also calculated.

1. Introduction

Recently the extended interacting boson model of light nuclei ibm4 has been discussed (Elliott and White 1980, Elliott and Evans 1981, Halse et al 1984). A possible example with $\mathrm{O}(6)$ dynamical symmetry has been given, which includes the even-even nucleus ${ }^{30} \mathrm{Si}$ and odd-odd nucleus ${ }^{30} \mathrm{P}$ in a multiplet (Han et al 1987). However to discuss the ibm4 model further, for example to discuss the γ-transitions or the particle-transfer reactions, then the wavefunctions or the reduction coefficients of the dynamical symmetry group chain are needed.

The three medium coupling group chains of IBM4 all include the subgroup chain $\mathrm{O}_{6}(S T) \supset \mathrm{O}_{3}(S) \times \mathrm{O}_{3}(T):$
$\mathrm{U}_{36} \supset \mathrm{U}_{6}(s d) \times \mathrm{U}_{6}(S T) \supset \mathrm{U}_{5}(d) \times \mathrm{O}_{6}(S T) \supset \mathrm{O}_{5}(d) \times \mathrm{O}_{3}(S) \times \mathrm{O}_{3}(T) \supset \ldots$
$\mathrm{U}_{36} \supset \mathrm{U}_{6}(s d) \times \mathrm{U}_{6}(S T) \supset \mathrm{O}_{6}(s d) \times \mathrm{O}_{6}(S T) \supset \mathrm{O}_{5}(d) \times \mathrm{O}_{3}(S) \times \mathrm{O}_{3}(T) \supset \ldots$
$\mathrm{U}_{36} \supset \mathrm{U}_{6}(s d) \times \mathrm{U}_{6}(S T) \supset \mathrm{SU}_{3}(s d) \times \mathrm{O}_{6}(S T) \supset \mathrm{O}_{3}(d) \times \mathrm{O}_{3}(S) \times \mathrm{O}_{3}(T) \supset \ldots$.
This $\mathrm{O}_{6}(S T)$ of bosons is isomorphic to the Wigner supermultiplet group $\mathrm{SU}(4)$ of nucleons at the Lie algebraic level. In the lowest approximation of ibm4, only the totally symmetric representations of $\mathrm{U}_{6}(s d)$ are important. The reduction coefficients related to $\mathrm{U}_{6}(s d)$ and its subgroups have been given in the program PHINT (by Scholten). So what we need is only the isoscalar factors (ISF) of $\mathrm{O}_{6}(S T) \times \mathrm{O}_{6}(S T) \supset$ $\mathrm{O}_{6}(S T) \supset \mathrm{O}_{3}(S) \times \mathrm{O}_{3}(T)$. This is the direct motivation to calculate the isf.

We start from the boson realisation of $\mathrm{O}_{6}(S T)$ and write its generators as irreducible tensor operators of $\mathrm{O}_{3}(S)$ and $\mathrm{O}_{3}(T)$. We obtain the totally symmetric irreducible representations (IR) $\langle\mu 00\rangle$ of $\mathrm{O}_{6}(S T)$ by utilising the Wigner-Eckart theorem. Then we derive the ISF of $\langle\mu 00\rangle \times\langle 100\rangle=\langle\mu+100\rangle \oplus\langle\mu-100\rangle \oplus\langle\mu 10\rangle$ and at the same time we obtain the IR $\langle\mu 10\rangle$. The IR $\langle\mu 10\rangle$ is not totally symmetric and is not simply reduced according to the group chain $\mathrm{O}_{6}(S T) \supset \mathrm{O}_{3}(S) \times \mathrm{O}_{3}(T)$. The simply reduced isf above have been given by Hecht and Pang (1969). Some Wigner supermultiplet
bases have been discussed, including a canonical orthonormal one (Hecht et al 1987). Here we also propose a method for labelling the degenerate states. This is an interesting new application of the tensor basis method to obtain the IR of semisimple Lie algebras (Biedenharn 1963, Baird and Biedenharn 1963, 1964, Sun and Han 1965, 1981, Yang et al 1964).

The tensor basis of $\mathrm{O}_{6}(S T)$ is given in § 2. The IR are given in § 3. The isf from $\langle\mu 00\rangle \times\langle 100\rangle$ to $\langle\mu+100\rangle$ and $\langle\mu-100\rangle$ are given in § 4. The isf from $\langle\mu 00\rangle \times\langle 100\rangle$ to $\langle\mu 10\rangle$ and the IR $\langle\mu 10\rangle$ are given in § 5 .

2. Tensor basis of O_{6}

It is known that the Cartan-Weyl basis of O_{6} is

$$
\begin{equation*}
H_{i} \quad E_{ \pm e_{j} \pm e_{k}} \quad i, j, k=1,2,3 \quad j \neq k \tag{2.1}
\end{equation*}
$$

where $e_{1}=(100), e_{2}=(010), e_{3}=(001)$ form an orthonormal basis in R^{3} and $\pm e_{j} \pm e_{k}$ are the roots of O_{6}.

Let $\xi_{q}^{\dagger}, \eta_{q}^{\dagger}$ and ξ_{q}, η_{q} be creation and annihilation operators of two kinds of bosons with angular momentum one. q is the quantum number of the z component of the angular momentum, $q=0, \pm 1$. Consider the following operators:

$$
\begin{align*}
& S_{q}=\sqrt{2}\left(\xi^{\dagger} \tilde{\xi}\right)_{q}^{1}=\sum_{q^{\prime} q^{\prime \prime}} \xi_{q^{\prime}}^{+} \tilde{\xi}_{q^{\prime \prime}}\left(1 q^{\prime} 1 q^{\prime \prime}|1 q\rangle\right. \\
& T_{q}=\sqrt{2}\left(\eta^{+} \tilde{\eta}\right)_{q}^{1}=\sum_{q^{\prime} q^{\prime \prime}} \eta_{q^{\prime}}^{+} \tilde{\eta}_{q^{\prime \prime}}\left(1 q^{\prime} 1 q^{\prime \prime}|1 q\rangle\right. \tag{2.2}\\
& V_{q_{1} q_{2}}=i\left(\xi_{q_{1}}^{\dagger} \tilde{\eta}_{q_{2}}-\eta_{q_{2}}^{+} \tilde{\xi}_{q_{1}}\right) \quad q, q_{1}, q_{2}=0, \pm 1
\end{align*}
$$

where $\left\langle 1 q^{\prime} 1 q^{\prime \prime} \mid 1 q\right\rangle$ are Clebsch-Gordan coefficients of O_{3}, and

$$
\begin{equation*}
\tilde{\xi}_{q}=(-1)^{1+q} \xi_{-q} \quad \tilde{\eta}_{q}=(-1)^{1+q} \eta_{-q} . \tag{2.3}
\end{equation*}
$$

When

$$
\begin{array}{ll}
H_{1}=S_{0} / 2 \sqrt{2} & H_{2}=T_{0} / 2 \sqrt{2} \quad H_{3}=V_{00} / 2 \sqrt{2} \\
E_{e_{1} \pm e_{2}}=V_{1 \pm 1} / 2 \sqrt{2} & E_{-\left(e_{1} \pm e_{2}\right)}=V_{-1 \neq 1} / 2 \sqrt{2} \\
E_{e_{1} \pm e_{3}}=\left(S_{1} \pm V_{10}\right) / 4 & E_{-\left(e_{1} \pm e_{3}\right)}=-\left(S_{-1} \pm V_{-10}\right) / 4 \\
E_{e_{2} \pm e_{3}}=\left(T_{1} \pm V_{01}\right) / 4 & E_{-\left(e_{2} \pm e_{3}\right)}=-\left(T_{-1} \pm V_{0-1}\right) / 4 \tag{2.4}
\end{array}
$$

by straightforward calculation we see the operators $H_{i}, E_{ \pm e_{j} \pm e_{k}}$ generate the O_{6} group. So we can use the operators S_{q}, T_{q} and $V_{q_{1} q_{2}}$ as the tensor basis of O_{6}. This is a boson realisation of $\mathrm{O}_{6}(S T)$.

The commutation relations can be written as:

$$
\begin{align*}
& {\left[S_{0}, S_{ \pm 1}\right]= \pm S_{ \pm 1} \quad\left[S_{+1}, S_{-1}\right]=-S_{0}} \\
& {\left[T_{0}, T_{ \pm 1}\right]= \pm T_{ \pm 1} \quad\left[T_{+1}, T_{-1}\right]=-T_{0}} \tag{2.5}\\
& {\left[S_{0}, V_{q_{1} q_{2}}\right]=q_{1} V_{q_{1} q_{2}}} \\
& {\left[S_{ \pm 1}, V_{q_{1} q_{2}}\right]=\mp\left[\left(1 \mp q_{1}\right)\left(1 \pm q_{1}+1\right) / 2\right]^{1 / 2} V_{q_{1} \pm 1 q_{2}}} \tag{2.6}\\
& {\left[T_{0}, V_{q_{1} q_{2}}\right]=q_{2} V_{q_{1} q_{2}}} \\
& {\left[T_{1}, V_{q_{1} q_{2}}\right]=\mp\left[\left(1 \mp q_{2}\right)\left(1 \pm q_{2}+1\right) / 2\right]^{1 / 2} V_{q_{1} q_{2} \pm 1}}
\end{align*}
$$

and

$$
\begin{array}{lr}
(V V)_{q 0}^{10}=\sqrt{3 / 2} S_{q} & (V V)_{0 q}^{01}=\sqrt{3 / 2} T_{q} \\
(V V)_{q_{1} q_{2}}^{21}=0 & (V V)_{q_{1} q_{2}}^{12}=0 \tag{2.7}
\end{array}
$$

where

$$
\begin{equation*}
(V V)_{q_{1} q_{2}}^{k_{1} k_{2}}=\sum_{\substack{q_{1}, q_{i}, q_{i}^{1}, q_{2}^{\prime \prime} \\ V_{q_{1} q_{2}}^{2}, V_{q_{i} q_{2}^{\prime \prime}}}}\left\langle 1 q_{1}^{\prime} 1 q_{1}^{\prime \prime} \mid k_{1} q_{1}\right\rangle\left\langle 1 q_{2}^{\prime} 1 q_{2}^{\prime \prime} \mid k_{2} q_{2}\right\rangle . \tag{2.8}
\end{equation*}
$$

In this boson realisation of $\mathrm{O}_{6}(S T)$, the above commutation relations can be derived from the commutation relations of bosons

$$
\begin{align*}
& {\left[\xi_{q}, \xi_{q^{\prime}}\right]=\left[\eta_{q}, \eta_{q^{\prime}}\right]=0 \quad\left[\xi_{q}, \eta_{q^{\prime}}\right]=\left[\xi_{q}, \eta_{q^{+}}^{+}\right]=0} \tag{2.9}\\
& {\left[\xi_{q}, \xi_{q^{\prime}}^{+}\right]=\left[\eta_{q}, \eta_{q^{\prime}}^{+}\right]=\delta_{q q^{\prime}} .}
\end{align*}
$$

From (2.5) we see that two independent rotation groups $\mathrm{O}_{3}(S)$ and $\mathrm{O}_{3}(T)$ are generated by S_{q} and T_{q} respectively. From (2.6) we notice that $V_{q_{1} q_{2}}$ are double irreducible tensor operators of $\mathrm{O}_{3}(S)$ and $\mathrm{O}_{3}(T)$, where q_{1} and q_{2} are tensor component indices of $\mathrm{O}_{3}(S)$ and $\mathrm{O}_{3}(T)$.

The Casimir operator of $\mathrm{O}_{6}(S T)$ is

$$
\begin{equation*}
C_{2}=S^{2}+T^{2}+3(V V)_{00}^{00} \tag{2.10}
\end{equation*}
$$

where

$$
S^{2}=-S_{+1} S_{-1}-S_{-1} S_{+1}+S_{0}^{2} \quad T^{2}=-T_{+1} T_{-1}-T_{-1} T_{+1}+T_{0}^{2}
$$

3. Totally symmetric irreducible representations

In this section we show how the tensor bases S_{q}, T_{q} and $V_{q_{1} q_{2}}$ are convenient for deriving the IR of $\mathrm{O}_{6} \supset \mathrm{O}_{3}(S) \times \mathrm{O}_{3}(T)$. At first we give the known wavefunctions $\left|\chi_{S} S M_{S}\right\rangle_{\xi}$ and $\left|\chi_{T} T M_{T}\right\rangle_{\eta}$, which are classified by the group chains $\mathrm{U}_{3}(S) \supset \mathrm{O}_{3}(S) \supset$ $\mathrm{O}_{2}(S)$ and $\mathrm{U}_{3}(T) \supset \mathrm{O}_{3}(T) \supset \mathrm{O}_{2}(T) . \mathrm{U}_{3}(S) \times \mathrm{U}_{3}(T)$ and O_{6} are all subgroups of U_{6}. So the states in the space of totally symmetric representation $\langle\mu 00\rangle$ can be written as the linear combination of the direct products $\left|\chi_{S} S M_{S}\right\rangle_{\xi}\left|\chi_{T} T M_{T}\right\rangle_{\eta}$.

The groups $\mathrm{U}_{3}(S)$ and $\mathrm{U}_{3}(T)$ are generated by $\xi_{q}^{\dagger} \xi_{q^{\prime}}$ and $\eta_{q}^{\dagger} \eta_{q^{\prime}}$ respectively, with $q, q^{\prime}=0, \pm 1$. Let P_{ξ}^{\dagger} and P_{η}^{\dagger} be the ξ-pair and η-pair creation operators

$$
\begin{equation*}
P_{\xi}^{\dagger}=\sqrt{3 / 2}\left(\xi^{\dagger} \xi^{\dagger}\right)_{0}^{0} \quad P_{\eta}^{+}=\sqrt{3 / 2}\left(\eta^{+} \eta^{\dagger}\right)_{0}^{0} \tag{3.1}
\end{equation*}
$$

P_{ξ}^{\dagger} and P_{η}^{+}are $\mathrm{O}_{3}(S)$ and $\mathrm{O}_{3}(T)$ invariants:

$$
\begin{equation*}
\left[S_{q}, P_{\xi}^{+}\right]=0 \quad\left[T_{q}, P_{\eta}^{+}\right]=0 . \tag{3.2}
\end{equation*}
$$

It is known that

$$
\begin{align*}
& \left|\chi_{S} S S\right\rangle_{\xi}=C\left(\chi_{S} S\right) P_{\xi}^{+} \chi_{S} / 2 \xi_{1}^{+S}|000\rangle_{\xi} \\
& \left|\chi_{T} T T\right\rangle_{\eta}=C\left(\chi_{T} T\right) P_{\eta}^{+\chi_{T} / 2} \eta_{1}^{+T}|000\rangle_{\eta} \tag{3.3}
\end{align*}
$$

where

$$
\begin{equation*}
C(x, y)=\left(\frac{(2 y+1)!!}{(x / 2)!y!(2 y+x+1)!!}\right)^{1 / 2} . \tag{3.4}
\end{equation*}
$$

In the wavefunction $\left|\chi_{S} S M_{S}\right\rangle_{\xi}, \chi_{S} / 2$ is the ξ-pair number and S and M_{S} are the quantum numbers of S^{2} and S_{0}. Similarly in $\left|\chi_{T} T M_{T}\right\rangle_{\eta}, \chi_{T} / 2$ is the η-pair number and T and M_{T} are the quantum numbers of T^{2} and T_{0}. The states $\left|\chi_{S} S M_{S}\right\rangle_{\xi}$, and $\left|\chi_{T} T M_{T}\right\rangle_{\eta}$ can be obtained by operating S_{-1} and T_{-1} on $\left|\chi_{S} S S\right\rangle_{\xi}$ and $\left|\chi_{T} T T\right\rangle_{\eta}$ successively.

On the tensor basis of O_{6}, the Cartan subalgebra basis can be chosen as $\left\{S_{0}, T_{0}, V_{00}\right\}$. The highest-weight state $\left|\mu_{1} \mu_{2} \mu_{3}\right\rangle_{\mathrm{hw}}$ of the IR $\left\langle\mu_{1} \mu_{2} \mu_{3}\right\rangle$ satisfies

$$
\begin{array}{ll}
S_{0}\left|\mu_{1} \mu_{2} \mu_{3}\right\rangle_{\mathrm{hw}}=\mu_{1}\left|\mu_{1} \mu_{2} \mu_{3}\right\rangle_{\mathrm{hw}} & T_{0}\left|\mu_{1} \mu_{2} \mu_{3}\right\rangle_{\mathrm{hw}}=\mu_{2}\left|\mu_{1} \mu_{2} \mu_{3}\right\rangle_{\mathrm{hw}} \\
V_{\mathrm{oo}}\left|\mu_{1} \mu_{2} \mu_{3}\right\rangle_{\mathrm{hw}}=\mu_{3}\left|\mu_{1} \mu_{2} \mu_{3}\right\rangle_{\mathrm{hw}} & V_{1 \pm 1}\left|\mu_{1} \mu_{2} \mu_{3}\right\rangle_{\mathrm{hw}}=0 \tag{3.5}\\
\left(S_{1} \pm V_{10}\right)\left|\mu_{1} \mu_{2} \mu_{3}\right\rangle_{\mathrm{hw}}=0 & \left(T_{1} \pm V_{01}\right)\left|\mu_{1} \mu_{2} \mu_{3}\right\rangle_{\mathrm{hw}}=0 .
\end{array}
$$

In general the states in the IR Γ of $\mathrm{O}_{6}(S T) \supset \mathrm{O}_{3}(S) \times \mathrm{O}_{3}(T)$ can be written as

$$
\left|\begin{array}{c}
\Gamma \\
k(\chi) S M_{S} T M_{T}
\end{array}\right\rangle
$$

Where S, M_{S} and T, M_{T} are the quantum numbers of S^{2}, S_{0} and $T^{2}, T_{0} . k$ is a degenerate quantum number which does not appear when $\Gamma=\langle\mu 00\rangle$. (χ) is not an independent quantum number but sometimes it is useful. For the $\operatorname{IR}\langle\mu 00\rangle$ the states are written as

$$
\left|\begin{array}{c}
\langle\mu 00\rangle \\
(\chi) S M_{S} T M_{T}
\end{array}\right\rangle \quad \text { or } \quad\left|(\chi) S M_{S} T M_{T}\right\rangle
$$

and $\chi+S+T=\mu$. From (3.5) it is easy to find the highest-weight state

$$
\begin{equation*}
|\mu 00\rangle_{\mathrm{hw}}=|(0) \mu \mu 00\rangle=|0 \mu \mu\rangle_{\xi}|000\rangle_{\eta} \tag{3.6}
\end{equation*}
$$

When the operators S_{q} and T_{q} act on $\left.\mid(\chi) S M_{S} T M_{T}\right)$, only M_{S} and M_{T} are possibly changed. The matrix elements of S_{q} and T_{q} are known as the same in $\mathrm{O}_{3}(S)$ and $\mathrm{O}_{3}(T)$. When $V_{q_{1} q_{2}}$ operate on the state $\left|(\chi) S M_{S} T M_{T}\right\rangle$, the quantum numbers S, T and (χ) are changed. So when $V_{q_{1} q_{2}}$ acts repeatedly on the highest-weight state $|\mu 00\rangle_{\mathrm{hw}}$, we obtain the states with different S and different T in $\langle\mu 00\rangle$. From the Wigner-Eckart theorem we only need to calculate the reduced matrix elements $\left\langle\left(\chi^{\prime}\right) S^{\prime} T^{\prime}\|V\|(\chi) S T\right\rangle$ of $V_{q_{1} q_{2}}$:

$$
\begin{align*}
\left\langle\left(\chi^{\prime}\right) S^{\prime} M_{S}^{\prime}\right. & \left.T^{\prime} M_{T}^{\prime}\left|V_{q_{1} q_{2}}\right|(\chi) S M_{S} T M_{T}\right\rangle \\
= & {\left[\left(2 S^{\prime}+1\right)\left(2 T^{\prime}+1\right)\right]^{-1 / 2}\left\langle S M_{S} 1 q_{1} \mid S^{\prime} M_{S}^{\prime}\right\rangle\left\langle T M_{T} 1 q_{2} \mid T^{\prime} M_{T}^{\prime}\right\rangle } \\
& \times\left\langle\left(\chi^{\prime}\right) S^{\prime} T^{\prime}\|V\|(\chi) S T\right\rangle \tag{3.7}
\end{align*}
$$

Notice that

$$
\begin{equation*}
V_{q_{1} q_{2}}^{\dagger}=(-1)^{q_{1}+q_{2}} V_{-q_{1}-q_{2}} \tag{3.8}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\left\langle(\chi) S T\|V\|\left(\chi^{\prime}\right) S^{\prime} T^{\prime}\right\rangle=\left\langle\left(\chi^{\prime}\right) S^{\prime} T^{\prime}\|V\|(\chi) S T\right\rangle \tag{3.9}
\end{equation*}
$$

Define

$$
\{V|(\chi) S T\rangle\}_{M_{S}^{\prime} M_{T}}^{S^{\prime}{ }_{j}^{\prime}}=\sum_{q_{1} q_{2}}\left\langle S M_{S} 1 q_{1} \mid S^{\prime} M_{S}^{\prime}\right\rangle\left\langle T M_{T} 1 q_{2} \mid T^{\prime} M_{T}^{\prime}\right\rangle V_{q_{1} q_{2}}\left|(\chi) S M_{S} T M_{T}\right\rangle
$$

We obtain the recursion formulae between states with different S and T

$$
\begin{align*}
& \{V|(\chi) S T\rangle\}_{S-1 T+1}^{S-1}=[(2 S-1)(2 T+3)]^{-1 / 2} \\
& \quad \times\langle(\chi) S-1 T+1\|V\|(\chi) S T\rangle(\chi) S-1 S-1 T+1 T+1\rangle \tag{3.10}\\
& \{V|(\chi) S T\rangle\}_{S-1}^{S-1} \frac{T-1}{T-1}=[(2 S-1)(2 T-1)]^{-1 / 2} \\
& \tag{3.11}\\
& \quad \times\langle(\chi+2) S-1 T-1\|V\|(\chi) S T\rangle|(\chi+2) S-1 S-1 T-1 T-1\rangle
\end{align*}
$$

The coefficients

$$
[(2 S-1)(2 T+3)]^{-1 / 2}\langle(\chi) S-1 T+1\|V\|(\chi) S T\rangle
$$

and

$$
[(2 S-1)(2 T-1)]^{-1 / 2}\langle(\chi+2) S-1 T-1\|V\|(\chi) S T\rangle
$$

can be treated as the normalised constants of the states $|(\chi) S-1 S-1 T+1 T+1\rangle$ and $|(\chi+2) S-1 S-1 T-1 T-1\rangle$ respectively. Starting from the highest-weight state $|\mu 00\rangle_{\mathrm{hw}}$, using the recursion formulae we can calculate every $|(\chi) S S T T\rangle$ state in $\langle\mu 00\rangle$. By mathematical induction we get the states

$$
\begin{equation*}
|(\chi) S S T T\rangle=\sum_{\delta} A(\chi, S, T, \delta)|\chi-\delta S S\rangle_{\xi}|\delta T T\rangle_{\eta} \quad \chi=0,2,4, \ldots \tag{3.12}
\end{equation*}
$$

and the non-zero reduced matrix elements of $V_{q_{1} q_{2}}$

$$
\begin{align*}
&\langle(\chi) S-1 T+1\|V\|(\chi) S T\rangle=\langle(\chi) S T\|V\|(\chi) S-1 T+1\rangle \\
&=[S(2 S+\chi+1)(T+1)(2 T+\chi+3)]^{1 / 2} \tag{3.13}\\
&\langle(\chi+2) S-1 T-1\|V\|(\chi) S T\rangle=\langle(\chi) S T\|V\|(\chi+2) S-1 T-1\rangle \\
&=[S T(\chi+2)(2 \mu+2-\chi)]^{1 / 2} \tag{3.14}
\end{align*}
$$

where
$A(\chi, S, T, \delta)=(-\mathrm{i})^{T}(-1)^{\delta / 2}$

$$
\begin{equation*}
\times\left(\frac{(2 \mu+2-\chi)!!\chi!!(2 S+\chi+1)!!(2 T+\chi+1)!!}{(2 \mu+2)!!\delta!!(\chi-\delta)!!(2 S+\chi+1-\delta)!!(2 T+\delta+1)!!}\right)^{1 / 2} \tag{3.15}
\end{equation*}
$$

The reduction rule according to the group chain $\mathrm{O}_{6}(S T) \supset \mathrm{O}_{3}(S) \times \mathrm{O}_{3}(T)$ can be obtained from (3.13) and (3.14):

$$
\begin{equation*}
\langle\mu 00\rangle=\sum_{\substack{S+T+x=\mu \\ x=0,2,4, \ldots}}(S T) \tag{3.16}
\end{equation*}
$$

so $\langle\mu 00\rangle$ is simply reduced.
The eigenvalue of the Casimir operator in IR $\langle\mu 00\rangle$ is

$$
\begin{equation*}
{ }_{\mathrm{hw}}\langle\mu 00| C_{206}|\mu 00\rangle_{\mathrm{hw}}=\mu(\mu+4) . \tag{3.17}
\end{equation*}
$$

For example, the highest-weight state of $\operatorname{IR}\langle 100\rangle$ is

$$
\left|\begin{array}{lll}
1 & 0 & 0
\end{array}\right\rangle_{\mathrm{hw}}=|(0) 11100\rangle=\left|\begin{array}{llll}
0 & 1 & 1
\end{array}\right\rangle_{\xi}|0000\rangle_{\eta} .
$$

The non-zero reduced matrix elements of V are

$$
\langle(0) 01\|V\|(0) 10\rangle=\langle(0) 10\|V\|(0) 01\rangle=3 .
$$

The states with $S=M_{S}=0$ and $T=M_{T}=1$ is

$$
\left|(0) 0 \begin{array}{llll}
0 & 1 & 1
\end{array}\right\rangle=-\mathrm{i}\left|\begin{array}{llll}
0 & 0 & 0
\end{array}\right\rangle_{\xi}\left|\begin{array}{llllll}
1 & 1 & 1
\end{array}\right\rangle_{\eta} .
$$

$\operatorname{In} \operatorname{IR}\langle 100\rangle$ there are only two states with $(S T)=(10)$ and $(S T)=(01)$.

4. The isoscalar factors (ISF) of $\mathrm{O}_{6}(1) \times \mathrm{O}_{6}(2) \supset \mathrm{O}_{6}$

Consider two independent systems with $\mathrm{O}_{6}(1)$ and $\mathrm{O}_{6}(2)$ symmetry respectively. The generators are $S_{q}(i), T_{q}(i)$ and $V_{q_{1} q_{2}}(i)$ for $\mathrm{O}_{6}(i), i=1,2$. These two systems form a coupled system with O_{6} symmetry. The generators of O_{6} are
$S_{q}=S_{q}(1)+S_{q}(2) \quad T_{q}=T_{q}(1)+T_{q}(2) \quad V_{q_{1} q_{2}}=V_{q_{1} q_{2}}(1)+V_{q_{1} q_{2}}(2)$
Suppose the states

$$
\left|\begin{array}{c}
\Gamma_{i} \\
k_{i}\left(\chi_{i}\right) S_{i} M_{s i} T_{i} M_{T i}
\end{array}\right\rangle
$$

form a basis of the Γ_{i} representation space of $\mathrm{O}_{6}(i)$ and

$$
\left|\begin{array}{c}
\Gamma \\
k(\chi) S M_{S} T M_{T}
\end{array}\right\rangle
$$

form a basis of the Γ representation space of O_{6}. Then the ISF

$$
\left\langle\begin{array}{ccc}
\Gamma_{1} & & \Gamma_{2} \\
k_{1} & S_{1} & T_{1} \\
k_{2} & S_{2} T_{2} & k(\chi) S T
\end{array}\right\rangle
$$

of $\mathrm{O}_{6}(1) \times \mathrm{O}_{6}(2) \supset \mathrm{O}_{6}(S T) \supset \mathrm{O}_{3}(S) \times \mathrm{O}_{3}(T)$ are defined as

$$
\left|\begin{array}{c}
\Gamma\left(\Gamma_{1} \Gamma_{2}\right) \\
k(\chi) S M_{S} T M_{T}
\end{array}\right\rangle
$$

$$
\begin{align*}
= & \sum_{k_{1}, S_{1}, T_{1}, k_{2}, S_{2}, T_{2}}\left\langle\begin{array}{cc|c}
\Gamma_{1} & \Gamma_{2} & \Gamma \\
k_{1} S_{1} T_{1} K_{2} S_{2} T_{2} & k(\chi) S T
\end{array}\right\rangle \\
& \left.\times\left.\right|_{k_{1}\left(\chi_{1}\right)} S_{1} T_{1} k_{2}\left(\chi_{2}\right) S_{2} T_{2} S M_{S} T M_{T}\right\rangle \tag{4.2}
\end{align*}
$$

where

$$
\begin{align*}
& \left|\begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
k_{1}\left(\chi_{1}\right) S_{1} & \left.T_{1} k_{2}\left(\chi_{2}\right) S_{2} T_{2} S M_{S} T M_{T}\right\rangle \\
= & \sum_{M_{S 1}, M_{S 2}, M_{T 1}, M_{T 2}}\left\langle S_{1} M_{S 1} S_{2} M_{S 2} \mid S M_{S}\right\rangle\left\langle T_{1} M_{T 1} T_{2} M_{T 2} \mid T M_{T}\right\rangle \\
& \left.\times\left|\begin{array}{c}
\Gamma_{1} \\
k_{1}\left(\chi_{1}\right) \\
S_{1}
\end{array} M_{S 1} T_{1} M_{T 1}\right\rangle \right\rvert\, \begin{array}{c}
\Gamma_{2} \\
k_{2}\left(\chi_{2}\right) \\
S_{2}
\end{array} M_{S 2} T_{2} M_{T 2}
\end{array}\right\rangle .
\end{align*}
$$

In this paper we only discuss the isF with $\Gamma_{1}=\langle\mu 00\rangle$ and $\Gamma_{2}=\langle 100\rangle$. From § 3 we know that in $\langle\mu 00\rangle$ and $\langle 100\rangle$ representation spaces the states

$$
\left|\begin{array}{ll}
\Gamma_{i} \\
\left(\chi_{i}\right) & S_{i} \\
M_{S i} & T_{i} M_{T i}
\end{array}\right\rangle
$$

form an orthonormal basis and the degenerate quantum numbers k_{i} are not needed. Then formulae (4.2) and (4.3) are simplified to

$$
\begin{align*}
& \left|\begin{array}{c}
\Gamma\left(\Gamma_{1} \Gamma_{2}\right) \\
k(\chi) S M_{S} T M_{T}
\end{array}\right\rangle \\
& \left.=\sum_{S_{1}, T_{1}, S_{2}, T_{2}}\left\langle\begin{array}{cc|c}
\Gamma_{1} & \Gamma_{2} & \Gamma \\
S_{1} & T_{1} & S_{2} T_{2}
\end{array}\right) k(\chi) S T\right\rangle \\
& \times\left|\begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
\left(\chi_{1}\right) S_{1} & T_{1}\left(\chi_{2}\right) S_{2} T_{2}
\end{array} S M_{S} T M_{T}\right\rangle \tag{4.4}
\end{align*}
$$

$$
\begin{align*}
& \left|\begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
\left(\chi_{1}\right) & S_{1} T_{1}\left(\chi_{2}\right) S_{2} T_{2}
\end{array} S M_{S} T M_{T}\right\rangle \\
& =\sum_{M_{S 1}, M_{S 2}, M_{T 1}, M_{T 2}}\left\langle S_{1} M_{S 1} S_{2} M_{S 2} \mid S M_{S}\right\rangle\left\langle T_{1} M_{T 1} T_{2} M_{T 2} \mid T M_{T}\right\rangle \\
& \times\left|\begin{array}{ccc}
\Gamma_{1} & \\
\left(\chi_{1}\right) & S_{1} & M_{S 1} \\
T_{1} & M_{T 1}
\end{array}\right\rangle\left|\begin{array}{c}
\Gamma_{2} \\
\left(\chi_{2}\right) \\
S_{2}
\end{array} M_{S 2} T_{2} M_{T 2}\right\rangle . \tag{4.5}
\end{align*}
$$

The states

$$
\left|\begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
\left(\chi_{1}\right) & S_{1} T_{1}\left(\chi_{2}\right) S_{2} T_{2}
\end{array} S M_{S} T M_{T}\right\rangle
$$

also from an orthonormal basis for $\mathrm{O}_{6}(1) \times \mathrm{O}_{6}(2) \supset \mathrm{O}_{6}$. Then we get

$$
\begin{align*}
\left\langle\begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
S_{1} T_{1} & S_{2} \\
T_{2}
\end{array}\right. & \left.\begin{array}{c}
\Gamma \\
k(\chi) S T
\end{array}\right\rangle \\
& =\left\langle\left.\begin{array}{ccc}
\Gamma_{1} & \Gamma_{2} & S M_{S} T M_{T} \mid \\
\left(\chi_{1}\right) S_{1} & T_{1}\left(\chi_{2}\right) S_{2} T_{2}
\end{array} \right\rvert\, \begin{array}{c}
\Gamma(\chi) S M_{S} T M_{T}
\end{array}\right\rangle \tag{4.6}
\end{align*}
$$

We notice that the right-hand side of (4.6) is independent of M_{S} and M_{T}.
In general we need not choose an orthonormal basis for representation space. For example, it is convenient to choose the $\langle\mu 10\rangle$ basis

$$
\left|\begin{array}{c}
\left\langle\begin{array}{lll}
\mu & 1 & 0
\end{array}\right. \\
k(\chi) \\
S
\end{array} M_{S} T M_{T}\right\rangle,
$$

which are normalised but are not orthogonal for different k. Of course they are still orthogonal for different S, M_{S}, T and M_{T}. So we introduce a metric tensor ($\rho_{i j}$) in the subspace of Γ with definite S and T :

$$
\left.\begin{array}{l}
\rho_{i j}(S T)=\left\langle\begin{array}{c|c}
\Gamma & \Gamma \\
i(\chi) S M_{s} T M_{T}
\end{array}\right| j(\chi) S M_{S} T M_{T} \tag{4.7}
\end{array}\right\rangle
$$

Suppose ($\rho^{i j}$) is the inverse of $\left(\rho_{i j}\right)$. Then the identity operator in Γ representation space can be written as

$$
\sum_{i, j, S, M_{S}, T, M_{T}} \rho^{i j}\left|\begin{array}{c}
\Gamma \tag{4.8}\\
i(\chi) S M_{S} T M_{T}
\end{array}\right\rangle\left\langle\begin{array}{c}
\Gamma \\
j(\chi) S M_{S} T M_{T}
\end{array}\right|=I .
$$

Using (4.4), (4.5) and (4.8) we obtain the recursion formula of the isF

$$
\begin{align*}
& \sum_{i, j} \rho^{i j}(S T)\left\langle\begin{array}{c}
\Gamma \\
j\left(\chi^{\prime}\right) S^{\prime} T^{\prime}
\end{array}\| \| \begin{array}{c}
\Gamma \\
k(\chi) S T
\end{array}\right\rangle\left\langle\begin{array}{cc|c}
\Gamma_{1} & \Gamma_{2} & \Gamma \\
S_{1}^{\prime} & T_{1}^{\prime} & S_{2}^{\prime} \\
T_{2}^{\prime} & i\left(\chi^{\prime}\right) S^{\prime} T^{\prime}
\end{array}\right\rangle \\
& =\sum_{S_{1}, T_{1}, S_{2}, T_{2}}\left\langle\begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
\left(\chi_{1}^{\prime}\right) S_{1}^{\prime} T_{1}^{\prime}\left(\chi_{2}^{\prime}\right) S_{2}^{\prime} T_{2}^{\prime}
\end{array} S^{\prime} T^{\prime}\|[V(1)+V(2)]\| \begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
\left(\chi_{1}\right) S_{1} T_{1}\left(\chi_{2}\right) S_{2} T_{2}
\end{array} T^{2}\right\rangle \\
& \left.\times\left\langle\begin{array}{cc|c}
\Gamma_{1} & \Gamma_{2} & \Gamma \\
S_{1} & T_{1} & S_{2} T_{2}
\end{array}\right) k(\chi) S T\right\rangle \tag{4.9}
\end{align*}
$$

where

$$
\left.\left.\begin{array}{rl}
\left\langle\begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
\left(\chi_{1}^{\prime}\right) S_{1}^{\prime} & T_{1}^{\prime}\left(\chi_{2}^{\prime}\right) \\
S_{2}^{\prime} & T_{2}^{\prime}
\end{array} T^{\prime} \|[V(1)+V(2)]\right.
\end{array} \| \begin{array}{c}
\Gamma_{1} \\
\left(\chi_{1}\right) S_{1} T_{1}\left(\chi_{2}\right) S_{2} T_{2}
\end{array}\right) S T\right\rangle
$$

and
$f\left(S_{1}^{\prime}, S_{2}^{\prime}, S^{\prime}, S_{1}, S_{2}, S\right)$

$$
=\delta_{S_{2} S_{2}}(-1)^{S_{1}+S_{2}^{\prime}+S+1}\left[\left(2 S^{\prime}+1\right)(2 S+1)\right]^{1 / 2}\left\{\begin{array}{ccc}
1 & S_{1}^{\prime} & S_{1} \\
S_{2}^{\prime} & S & S^{\prime}
\end{array}\right\}
$$

$g\left(S_{1}^{\prime}, S_{2}^{\prime}, S^{\prime}, S_{1}, S_{2}, S\right)=\delta_{S_{1} S_{i}}(-1)^{S_{1}^{\prime}+S_{2}+S^{\prime}+1}\left[\left(2 S^{\prime}+1\right)(2 S+1)\right]^{1 / 2}\left\{\begin{array}{ccc}1 & S_{2}^{\prime} & S_{2} \\ S_{1}^{\prime} & S & S^{\prime}\end{array}\right\}$
where the $\}$ terms are $6-j$ symbols. The isf satisfy the normalisation condition

$$
\sum_{s_{1}, T_{1}, S_{2}, T_{2}}\left|\left\langle\begin{array}{c}
\Gamma \tag{4.10}\\
k(\chi) S T
\end{array} \left\lvert\, \begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
S_{1} & T_{1} S_{2} T_{2}
\end{array}\right.\right\rangle\right|^{2}=1
$$

When Γ is a totally symmetric representation, we have

$$
\begin{equation*}
\left(\rho_{i j}\right)=\left(\rho^{i j}\right)=I . \tag{4.11}
\end{equation*}
$$

The recursion formula (4.9) is simplified to

$$
\begin{align*}
& \left\langle\left.\begin{array}{c||c}
\Gamma & \| V \\
\left(\chi^{\prime}\right) & S^{\prime} T^{\prime}
\end{array} \right\rvert\, \begin{array}{cc|c}
\Gamma \\
(\chi) S T
\end{array}\right\rangle\left\langle\begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
S_{1}^{\prime} & T_{1}^{\prime} \\
S_{2}^{\prime} & T_{2}^{\prime}
\end{array}\left(\begin{array}{c}
\Gamma \\
\left.\chi^{\prime}\right) \\
S^{\prime} T^{\prime}
\end{array}\right\rangle\right. \\
& =\sum_{S_{1}, T_{1}, S_{2}, T_{2}}\left\langle\begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
\left(\chi_{1}^{\prime}\right) S_{1}^{\prime} & T_{1}^{\prime}\left(\chi_{2}^{\prime}\right) S_{2}^{\prime} T_{2}^{\prime}
\end{array} S^{\prime} T^{\prime}\|[V(1)+V(2)]\| \begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
\Gamma_{\left(\chi_{1}\right)} S_{1} T_{1}\left(\chi_{2}\right) S_{2} T_{2}
\end{array} T^{2}\right\rangle \\
& \times\left\langle\begin{array}{cc|c}
\Gamma_{1} & \Gamma_{2} & \Gamma \\
S_{1} T_{1} & S_{2} T_{2} & (\chi) S T
\end{array}\right\rangle .
\end{align*}
$$

Suppose the direct product $\langle\mu 00\rangle \times\langle 100\rangle$ can be decomposed to the direct sum of irreducible representations $\left\langle\mu_{1} \mu_{2} \mu_{3}\right\rangle$:

$$
\begin{equation*}
\langle\mu 00\rangle \times\langle 100\rangle=\sum_{\mu_{1}, \mu_{2}, \mu_{3}}\left\langle\mu_{1} \mu_{2} \mu_{3}\right\rangle \tag{4.12}
\end{equation*}
$$

Table 1. ISF $\left\langle\left.\begin{array}{cc}\langle\mu 00\rangle\langle 100\rangle & \begin{array}{c}\Gamma \\ \left(\chi_{1}\right) S_{1} \\ T_{1}\end{array} S_{2} T_{2}\end{array} \right\rvert\, \begin{array}{l}k(x) S T\end{array}\right\rangle$ of $\langle\mu 00\rangle \times\langle 100\rangle$ when χ is even.

$\left\|\begin{array}{c}\Gamma \\ k\left(\chi^{\prime}\right) S T\end{array}\right\rangle$	$\left(\chi_{1}\right) S_{1} T_{1} S_{2} T_{2}$			
	(x) S-1T10	$(x-2) S+1 \mathrm{~T} 10$	(x) ST-101	$\left(\chi^{-2)} S T+101\right.$
$\left\|\begin{array}{c}\langle\mu+10\end{array}\right\|$ (χ)	$\left(\frac{S(2 S+\chi+1)(2 \mu+4-x)}{2(\mu+1)(\mu+2)(2 S+1)}\right)^{1 / 2}$	$\left(\frac{(S+1) \chi(2 T+\chi+1)}{2(\mu+1)(\mu+2)(2 S+1)}\right)^{1 / 2}$	$\left(\frac{T(2 T+\chi+1)(2 \mu+4-\chi)}{2(\mu+1)(\mu+2)(2 T+1)}\right)^{1 / 2}$	$\left(\frac{(T+1) \chi(2 S+\chi+1)}{2(\mu+1)(\mu+2)(2 T+1)}\right)^{1 / 2}$
$\left\|\begin{array}{c}(\mu-100\rangle \\ (x) S T\end{array}\right\rangle$	$-\left(\frac{S_{\chi}(2 T+\chi+1)}{2(\mu+2)(\mu+3)(2 S+1)}\right)^{1 / 2}$	$-\left(\frac{(S+1)(2 S+\chi+1)(2 \mu+4-\chi)}{2(\mu+2)(\mu+3)(2 S+1)}\right)^{1 / 2}$	$\left(\frac{T_{X}(2 S+\chi+1)}{2(\mu+2)(\mu+3)(2 T+1)}\right)^{1 / 2}$	$\left(\frac{(T+1)(2 T+\chi+1)(2 \mu+4-\chi)}{2(\mu+2)(\mu+3)(2 T+1)}\right)^{1 / 2}$
	$\left(\frac{(S+1)(T+1) \chi(2 \mu+4-\chi)}{W(X, S, T)(2 S+1)}\right)^{1 / 2}$	$-\left(\frac{S(T+1)(2 S+\chi+1)(2 T+\chi+1)}{W(x, S, T)(2 S+1)}\right)^{1 / 2}$	0	$-\left(\frac{S(S+1)(2 T+1)}{W(x, S, T)}\right)^{1 / 2}$
$\left\lvert\,$$\langle\mu$ 0\right.	0	$-\left(\frac{T(T+1)(2 S+1)}{W(X, T, S)}\right)^{1 / 2}$	$\left(\frac{(S+1)(T+1) \chi(2 \mu+4-\chi)}{W(x, T, S)(2 T+1)}\right)^{1 / 2}$	$-\left(\frac{(S+1) T(2 S+\chi+1)(2 T+x+1)}{W(x, T, S)(2 T+1)}\right)^{1 / 2}$

The highest-weight state of $\left\langle\mu_{1} \mu_{2} \mu_{3}\right\rangle$ is $\left.\mu_{1} \mu_{2} \mu_{3}\right\rangle_{h w}$. Using (3.5), (3.13), (3.14) and (4.1) we obtain

$$
\mu_{3}=0 \quad\left|\mu_{1} \mu_{2} 0\right\rangle_{\mathrm{hw}}=\left|\begin{array}{c}
\left\langle\mu_{1} \mu_{2} 0\right\rangle \tag{4.13}\\
\mu_{1} \mu_{1} \mu_{2} \mu_{2}
\end{array}\right\rangle
$$

i.e. $S=M_{S}=\mu_{1}$ and $T=M_{T}=\mu_{2}$ for $\left|\mu_{1} \mu_{2} 0\right\rangle_{\mathrm{hw}}$. From (4.9) we obtain the ISF of $\left|\mu_{1} \mu_{2} 0\right\rangle_{\mathrm{hw}}$ satisfying

$$
\begin{align*}
& \times\left\langle\begin{array}{ccc|c}
\langle\mu & 0 & 0 & \langle 1
\end{array} 000\right\rangle\left|\begin{array}{ccc}
\begin{array}{llll}
\mu_{1} & \mu_{2} & 0
\end{array} \\
S_{1} & T_{1} & S_{2} \\
T_{2} & & (0) \mu_{1} \mu_{2}
\end{array}\right\rangle=0 \tag{4.14}
\end{align*}
$$

where $\mu_{1}^{\prime}=\mu_{1}+1, \mu_{2}^{\prime}=\mu_{2}+1$ or $\mu_{1}^{\prime}=\mu_{1}+1, \mu_{2}^{\prime}=\mu_{2}$ or $\mu_{1}^{\prime}=\mu_{1}, \mu_{2}^{\prime}=\mu_{2}+1$.
It is proved there are three and only three independent solutions of (4.14):

$$
\left.\left.\begin{array}{l}
\left.\left.\left\langle\begin{array}{ccc}
\langle\mu & 0 & 0\rangle \\
\mu & \langle & 0
\end{array} 0\right\rangle \right\rvert\, \begin{array}{cc}
\langle\mu+1 & 0
\end{array}\right) \\
\mu
\end{array} 10\right\rangle \begin{array}{c}
1 \\
\mu+1
\end{array}\right\rangle=1 .
$$

Thus we obtain the decomposition rule

$$
\begin{equation*}
\langle\mu 00\rangle \times\langle 100\rangle=\langle\mu+100\rangle\langle\mu-100\rangle \oplus\langle\mu 10\rangle . \tag{4.18}
\end{equation*}
$$

Using the recursion formula (4.9) we obtain the ISF of $\langle\mu+100\rangle$ and $\langle\mu-100\rangle$ from (4.15) and (4.16). The results are given in table 1. Where $\chi+S+T=\mu+1, \chi=$ $0,2,4, \ldots$ for $\langle\mu+100\rangle$ and $\chi=2,4, \ldots$ for $\langle\mu-100\rangle$.

5. Representations and ISF of $\langle\boldsymbol{\mu} 10\rangle$

Notice that the states

$$
\left|\begin{array}{cc}
\langle\mu 00\rangle & \langle 100\rangle \\
\left(\chi_{1}\right) S_{1} T_{1}\left(\chi_{2}\right) S_{2} T_{2}
\end{array} S M_{S} T M_{T}\right\rangle
$$

form an orthonormal basis of $\langle\mu 00\rangle \times\langle 100\rangle$. From (4.18) and the results of $\S 3$ we get the decomposition rule of $\langle\mu 10\rangle$ to $(S T)$ as

$$
\begin{align*}
& \langle\mu 10\rangle=(\mu 1)+(\mu-12)+(\mu-23)+\ldots+(1 \mu) \\
& (\mu 0)+(\mu-11)^{2}+(\mu-22)^{2}+\ldots+(1 \mu-1)^{2}+(0 \mu) \\
& +(\mu-10)+(\mu-21)^{2}+\ldots+(1 \mu-2)^{2}+(0 \mu-1) \\
& (\mu-20)+\ldots+(1 \mu-3)^{2}+(0 \mu-2) \\
& +. . \\
& +(10)+(01) . \tag{5.1}
\end{align*}
$$

The superscripts 2 of ($S T$) indicate that $\langle\mu 10\rangle$ includes states with ($S T$) twice. We use a degenerate quantum number for distinguishing the two states

$$
\left|\begin{array}{ccc}
\left\langle\begin{array}{ll}
\mu & 1
\end{array}\right\rangle \\
1(\chi) & S
\end{array}\right\rangle \quad \text { and } \quad\left|\begin{array}{cc}
\left\langle\begin{array}{ll}
\mu & 1
\end{array}\right\rangle \\
2(\chi) & S
\end{array}\right\rangle
$$

We also have $\chi+S+T=\mu+1$. But in $\langle\mu 10\rangle, \chi$ can be even or odd.
When $\chi=0,\langle\mu 00\rangle \times\langle 100\rangle$ is reduced to the singlet states

$$
\left|\begin{array}{ccc}
\langle\mu & 10 \\
(0) & S & T
\end{array}\right\rangle
$$

of $\langle\mu 10\rangle$. Considering the states

$$
\left|\begin{array}{ccc}
\langle\mu & 1 & 0\rangle \\
(0) & S & T
\end{array}\right\rangle
$$

are orthogonal to the states

$$
\left|\begin{array}{c}
\langle\mu+100\rangle \\
(0) S T
\end{array}\right\rangle
$$

from (4.9) we obtain the ISF

$$
\left.\begin{array}{l}
\left\langle\begin{array}{ccccc}
\langle\mu & 0 & 0\rangle & \langle & 0
\end{array} 0\right\rangle \\
S-1
\end{array}\left|\begin{array}{ccc}
\langle & \mu & 1 \tag{5.2}\\
S & 1 & T
\end{array}\right| \begin{array}{lll}
(0) & S & T
\end{array}\right\rangle=\left[\frac{T}{\mu+1}\right]^{1 / 2} .
$$

When χ is odd, $\langle\mu 00\rangle \times\langle 100\rangle$ can only be reduced to $\langle\mu 10\rangle$. By suitable choice of the phase factors, we obtain the isF in table 2 . In this case the states

$$
\left|\begin{array}{c}
\langle\mu 10\rangle \\
k(\chi=\text { odd }) S T
\end{array}\right\rangle
$$

are orthonormal and $\rho_{i j}=\rho^{i j}=\delta_{i j}$. In table 2 we see that when $T=0$ or $S=0$:

$$
\left.\begin{array}{l}
\left\langle\begin{array}{cccc|ccc}
\left\langle\begin{array}{llll}
\mu & 0 & 0\rangle & \langle 1
\end{array} 0\right. & 0 & \begin{array}{ccc}
\langle\mu & 1 & 0
\end{array} \\
(\chi-1) & S & 0 & 1 & 0 & 1 & (\chi)
\end{array}\right)=1 \tag{5.3}
\end{array}\right\rangle=1 .
$$

Table 2. isF $\left\langle\begin{array}{cc}\langle\mu & 000\rangle \\ (100) & \begin{array}{c}\Gamma \\ \left(\chi_{1}\right) S_{1} T_{1} \\ S_{2}\end{array} T_{2}\end{array} k(\chi) S T\right\rangle$ of $\langle\mu 00\rangle \times(100)$ when χ is odd.

$\left\|\begin{array}{c}\Gamma \\ k(x) S T\end{array}\right\rangle$	$\left(\chi_{1}\right) S_{1} T_{1} S_{2} T_{2}$	
	$(x-1) S T 10$	$(x-1) S T 01$
$\left\|\begin{array}{ccc}\mu & 1 & 0 \\ 1(x) & S\end{array}\right\rangle$	1	0
$\left\|\begin{array}{ccc}\mu & 1 & 0 \\ 2(x) & S\end{array}\right\rangle$	0	1

$j\left(\chi^{\prime}\right) S^{\prime} T^{\prime}$	$i(\chi) S T$	
	$1(x) S T$	$2(x) S T$
$1(x-2) S+1 T+1$	$\left(\frac{S(S+2)(T+2)(\chi-2)(2 \mu+6-\chi) W(\chi, S, T)}{(S+1) W(x-2, S+1, T+1)}\right)^{1 / 2}$	0
$2(\chi-2) S+1 T+1$	0	$\left(\frac{(S+2) T(T+2)(\chi-2)(2 \mu+6-\chi) W(\underline{\chi}, T, S)}{(T+1) W(\chi-2, T+1, S+1)}\right)^{1 / 2}$
$1(\chi) S+1 T-1$	$\left(\frac{S(S+2)(T+1)(2 S+\chi+1)(2 T+\chi+1) W(\chi, S+1, T-1)}{(S+1) W(x, S, T)}\right)^{1 / 2}$	$\begin{aligned} & \left\{(2 S+\chi+1)(2 T+\chi+1)\left[S T(S+T+3)+2 T-(S+1)^{2}\right]\right. \\ & \quad+(2 S+1)(T-S-1)[T(2 T+1)-(S+1)]\} \end{aligned}$
		$\times\left(\frac{(S+2)(T+1)}{(S+1) T W(\chi, T, S) W(\chi, S+1, T-1)}\right)^{1 / 2}$
$2(x) S+1 T-1$	$\begin{aligned} & (S+T+2)[S(S+2)(T-1)(T+1)]^{1 / 2} \\ & \quad \times\left(\frac{(2 S+\chi+1)(2 S+\chi+3)(2 T+\chi-1)(2 T+\chi+1)}{W(\chi, S, T) W(\chi, T-1, S+1)}\right)^{1 / 2} \end{aligned}$	$\left(\frac{(S+2)(T-1)(T+1)(2 S+\chi+3)(2 T+\chi-1) W(\chi, T, S)}{T W(x, T-1, S+1)}\right)^{1 / 2}$
$1(x-1) S+1 T$	0	$(S+T+2)\left(\frac{S(2 T+1)(2 S+\chi+1)(2 T+\chi+1)}{(T+1) W(\chi, S, T)}\right)^{1 / 2}$
$2(x-1) S+1 T$	0	$\left(\frac{(2 T+1) W(\chi, T, S)}{T(T+1)}\right)^{1 / 2}$
$1(\chi-1) S T+1$	$\left(\frac{(2 S+1) W(\chi, S, T)}{S(S+1)}\right)^{1 / 2}$	0
$2(X-1) S T+1$	$(S+T+2)\left(\frac{(2 S+1) T(2 S+\chi+1)(2 T+\chi+1)}{(S+1) W(\chi, T, S)}\right)^{1 / 2}$	0

$j\left(\chi^{\prime}\right) S^{\prime} T^{\prime}$	$i(x) S T$	
	$1(x) S T$	$2(x) S T$
$1(x-2) S+1 T+1$	$\left(\frac{S(S+2)(T+1)(x-1)(2 \mu+5-x)}{(S+1)}\right)^{1 / 2}$	0
$2(x-2) S+1 T+1$	0	$\left(\frac{T(T+2)(S+1)(\chi-1)(2 \mu+5-\chi)}{(T+1)}\right)^{1 / 2}$
$1(x) S+1 T-1$	$\left(\frac{S(S+2) T(2 S+\chi+2)(2 T+\chi)}{(S+1)}\right)^{1 / 2}$	0
$2(x) S+1 T-1$	0	$\left(\frac{(S+1)(T-1)(T+1)(2 S+\chi+2)(2 T+\chi)}{T}\right)^{1 / 2}$
$1(x) S T$	0	$-[(2 S+1)(2 T+1)]^{1 / 2}$
$2(x) S T$	$-[(2 S+1)(2 T+1)]^{1 / 2}$	0
$1(x-1) S+1 T$	0	$(T-S)\left(\frac{(S+2)(2 T+1)(\chi-1)(2 \mu+5-\chi)}{(T+1) W(\chi-1, S+1, T)}\right)^{1 / 2}$
$2(x-1) S+1 T$	0	$-\left(\frac{(S+1)(S+2)(2 T+1)(2 S+\chi+2)(2 T+\chi)(\chi-1)(2 \mu+5-\chi)}{T(T+1) W(x-1, T, S+1)}\right)^{1 / 2}$
$1(x-1) S T+1$	$-\left(\frac{(2 S+1)(T+1)(T+2)(2 S+\chi)(2 T+\chi+2)(x-1)(2 \mu+5-\chi)}{S(S+1) W(x-1, S, T+1)}\right)^{1 / 2}$	0
$2(x-1) S T+1$	$(S-T)\left(\frac{(2 S+1)(T+2)(\chi-1)(2 \mu+5-\chi)}{(S+1) W(\chi-1, T+1, S)}\right)^{1 / 2}$	0

So there are only singlet states

$$
\left|\begin{array}{ccc}
\left\langle\begin{array}{lll}
\mu & 1 & 0
\end{array}\right\rangle \\
1(\chi) & S & 0
\end{array}\right\rangle \quad \text { or } \quad\left|\begin{array}{ccc}
\left\langle\begin{array}{lll}
\mu & 1 & 0
\end{array}\right. \\
2(\chi) & (x)
\end{array}\right\rangle
$$

for $T=0$ or $S=0$, respectively.
When χ is even and non-zero, the ISF are also given in table 1. In this case, the states

$$
\left|\begin{array}{c}
\langle\mu 10\rangle \\
k(\chi=\text { even }) S T
\end{array}\right\rangle
$$

are normalised but are not orthogonal for different k :

$$
\begin{align*}
& \rho_{11}=\rho_{22}=1, \\
& \rho_{12}=\rho_{21}=(S+T+2)\left(\frac{S T(2 S+\chi+1)(2 T+\chi+1)}{W(\chi, S, T) W(\chi, T, S)}\right)^{1 / 2} \tag{5.4}
\end{align*}
$$

where

$$
W(\chi, S, T)=S(2 T+1)(S+T+2)+\chi(T+1)(2 \mu+4-\chi) .
$$

Using the above isf we get the reduced matrix elements of V from (4.9) and (4.9'). The results are given in tables 3 and 4 . Then we obtain the explicit matrix elements of generators in the IR $\langle\mu 10\rangle$.

Acknowledgments

This work was supported by the Chinese National Science Foundation and the Chinese National Education Commission.

References

Baird G E and Biedenharn L C 1963 J. Math. Phys. 41449

- 1964 J. Math. Phys. 51730

Biedenharn L C 1963 J. Math. Phys. 4436
Elliott J P and Evans J A 1981 Phys. Lett. 101B 216
Elliott J P and White A P 1980 Phys. Lett. 97B 169
Halse P, Elliott J P and Evans J A 1984 Nucl. Phys. A 417301
Han Q Z, Sun H Z and Li G H 1987 Phys. Rev. C 35786
Hecht K T and Pang S C 1969 J. Math. Phys. 101571
Hecht K T, Le Blanc R and Rowe D J 1987 J. Phys. A: Math. Gen. 20257
Sun H Z and Han Q Z 1965 Acta Phys. Sin. 2156

- 1981 Sci. Sin. 24914

Yang G Z, Sun H Z, Guan H and Han Q Z 1964 Acta. Sci. Nat. Univ. Peking 10253

