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Abstract. Using the tensor basis and utilising the Wigner-Eckart theorem, we obtain the 
matrix representations ( ~ 0 0 )  and ( ~ 1 0 )  of O,(S 7) 3 O , ( S )  x O,( T ) .  The isoscalar factors 
of O,(S 7) x O,(S T )  2 06( S T )  2 O,( S) x O,( T )  are also calculated. 

1. Introduction 

Recently the extended interacting boson model of light nuclei I B M ~  has been discussed 
(Elliott and White 1980, Elliott and Evans 1981, Halse et al 1984). A possible example 
with O(6) dynamical symmetry has been given, which includes the even-even nucleus 
30Si and odd-odd nucleus 30P in a multiplet (Han et a1 1987). However to discuss the 
IBMI model further, for example to discuss the y-transitions or the particle-transfer 
reactions, then the wavefunctions or the reduction coefficients of the dynamical sym- 
metry group chain are needed. 

The three medium coupling group chains of I B M ~  all include the subgroup chain 
0 6 ( S T )  2 03(S) x 03( T): 

U36=U6(Sd)XU6(ST)3U5(d)X06(S T ) ~ O , ( d ) x O 3 ( S ) x O 3 ( T ) = .  . . 
U36 u6(s d )  x u,(s T )  0 6 ( s  d )  x 06(s T )  O , ( d )  x 03(s) x 0 3 (  T )  =. . . 
U363uUg(Sd)XU6(ST) 3SU3(sd)x06(S T)=O3(d)xO3(S)xO3(T)=.  

This 0 6 ( S  T )  of bosons is isomorphic to the Wigner supermultiplet group SU(4) of 
nucleons at the Lie algebraic level. In the lowest approximation of IBMI, only the 
totally symmetric representations of U,( s d )  are important. The reduction coefficients 
related to U6(sd) and its subgroups have been given in the program PHINT (by 
Scholten). So what we need is only the isoscalar factors (ISF) of 0 6 ( S  T) x 0 6 ( S  T) 3 

06( S T )  2 O,( S )  x 03( T ) .  This is the direct motivation to calculate the ISF. 
We start from the boson realisation of 06( S T )  and write its generators as irreducible 

tensor operators of 03( S )  and 03( T ) .  We obtain the totally symmetric irreducible 
representations ( IR)  ( p  0 0) of 06( S T )  by utilising the Wigner-Eckart theorem. Then 
we derive the ISF of ( p  OO)x(l OO)=(p+l  OO)O(p- l  OO)O(p 10)  and at the same 
time we obtain the IR  ( p  1 0). The I R  ( p  1 0) is not totally symmetric and is not simply 
reduced according to the group chain O,( S T )  2 03( S )  x 03( T). The simply reduced 
ISF above have been given by Hecht and Pang (1969). Some Wigner supermultiplet 
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bases have been discussed, including a canonical orthonormal one (Hecht et al 1987). 
Here we also propose a method for labelling the degenerate states. This is an interesting 
new application of the tensor basis method to obtain the I R  of semisimple Lie algebras 
(Biedenharn 1963, Baird and Biedenharn 1963, 1964, Sun and Han 1965, 1981, Yang 
et al 1964). 

The tensor basis of O,(S T )  is given in § 2. The I R  are given in § 3. The ISF from 
( p  0 0)x (1 0 0) t o ( p  + 1 0  O)and(p - 1 0  0)aregivenin 0 4. The IsFfrom(p 0 0)x (1 0 0) 
to ( p  10)  and the IR ( p  10)  are given in § 5. 

2. Tensor basis of 0, 

It is known that the Cartan-Weyl basis of O6 is 

Hi E+ej*ek i, j ,  k = 1,2,3 j # k  (2.1) 

where e, = (1 0 0), e, = (0 1 0), e3 = (0 0 1) form an orthonormal basis in R3 and 
*ej  * ek are the roots of 0,. 

Let t i ,  7: and t,, 7, be creation and annihilation operators of two kinds of bosons 
with angular momentum one. 4 is the quantum number of the z component of the 
angular momentum, 4 = 0, *l. Consider the following operators: 

s, =fi(s+i)t, = s',&..(i q r  1 4 l i  4 )  
4'4" 

T 4 = f i ( q t f ) i =  q:,fqJf(1 4 '1  4"Il 4) 

Vqtq2= f ( t 5 q 2 -  77;21,,) 
4'4" 

4, 91, 42 = 0, * 1 
where (1 4' 1 4 " (  1 4) are Clebsch-Gordan coefficients of 03, and 

i, = (-1)""-, f q  = (-l)l+%-,. 

When 

H1 = So/2fi H 2  = T o / 2 f i  H3 = Voo/2fi 

Eel*,,- - Vl*lI2f i  E-(el*e21= V-l.l/2fi 

E,,,,, = (SI * V10)/4 

E,,*,, - - ( T I  * V d 4  

(2.4) 
E - ( e , * e 3 )  = -(s-l* V - d / 4  

E-(,,*,,, = -(T-1* V0-,)/4 
by straightforward calculation we see the operators H i ,  Ere,*ek generate the O6 group. 
So we can use the operators S,, T, and VqIq2 as the tensor basis of 0,. This is a boson 
realisation of O,( S T ) .  

The commutation relations can be written as: 

(2.5) 
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and 

where 

(VV)fj:k = c (1 4; 1 4 :  I h q , ) ( l  q ;  1 42” I k2 42). (2.8) 

In this boson realisation of 06( S T ) ,  the above commutation relations can be derived 
from the commutation relations of bosons 

4;*4;.4;.41 
v q  I 4 2  * v q  I 4 2  

From (2.5) we see that two independent rotation groups 03( S) and 03( T )  are generated 
by S, and T, respectively. From (2.6) we notice that Vqlq2 are double irreducible tensor 
operators of 0 3 ( S )  and O,( T ) ,  where 4, and q2 are tensor component indices of 0 3 ( S )  
and 03( T ) .  

The Casimir operator of 0 6 ( S  T )  is 

C2 = S 2  + T 2  + 3 ( VV) :: 

S 2  = -S,,S-, - S-,S+, + S: 

(2.10) 

where 

r2 = - T,, T- ,  - r-, r,, + r:. 

3. Totally symmetric irreducible representations 

In this section we show how the tensor bases S,, T, and Vql,, are convenient for 
deriving the I R  of 0 6 2 0 3 ( S ) x 0 3 ( T ) .  At first we give the known wavefunctions 
I X S  S Ms),  and IxT TMr) , ,  which are classified by the group chains U,( S) 2 O,(S) 3 

0 2 ( S )  and U,( T )  3 03( T )  =I O,( T ) .  U3(S) x U,( T )  and O6 are all subgroups of u6. 

So the states in the space of totally symmetric representation ( p  0 0) can be written as 
the linear combination of the direct products /xs S M s ) ,  IxT TMT) , .  

The groups U3(S) and U3(T) are generated by [it,, and 7:7,, respectively, with 
q, q ’ =  0, * l .  Let P i  and P’, be the [-pair and 7-pair creation operators 

P ;  = m([+[+): P ; = m ( q t 7 + ) : .  (3.1) 

P i  and P ;  are O,(S) and O,( T )  invariants: 

[Sq, p;1= 0 [ q, P ; ]  = 0. (3.2) 
It is known that 

(3.3) 

where 

) y ,  = ((x,2)!y ! ( 2 y  + x + 1) !! 
(2y+ l)!! 

(3.4) 
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In the wavefunction / x S S M s ) * ,  xs /2  is the &pair number and S and Ms are the 
quantum numbers of S2  and So. Similarly in IxT TM,),, x T / 2  is the T-pair number 
and T and MT are the quantum numbers of T 2  and To. The states /xS S Ms)<,  and 
IxT TMT) ,  can be obtained by operating S-, and T-,  on ( X ~ S S ) ~  and /xT T T ) ,  
successively. 

On the tensor basis of 06, the Cartan subalgebra basis can be chosen as {So,  To,  Voo}. 
The highest-weight state / p l  pz p . 3 ) h w  of the I R  (pl p 2  p3) satisfies 

S O l p l  p2 p 3 ) h w = I * I / p l  p2 p 3 ) h w  TOIpl @ 2  p 3 ) h w =  @ 2 / p I  p2 p 3 ) h w  

vOO1pl p Z  p 3 ) h w =  P~IPI  p 2  p 3 ) h w  v l * l l ~ l  EL2 p . j ) h w = O  (3.5) 

(Sl* v l O ) l p l l * Z  p 3 ) h w = O  (Tl* VOl)Il*l P2 F 3 ) h W  = 0. 

In general the states in the I R  r of 0 6 ( S  T )  3 0 3 ( S )  x 03( 7 )  can be written as 

Where S, Ms and T, MT are the quantum numbers of S 2 ,  So and T2 ,  To. k is a 
degenerate quantum number which does not appear when r = ( p  0 0). (x) is not an  
independent quantum number but sometimes it is useful. For the I R  ( p  0 0) the states 
are written as 

and x + S +  T = p. From (3.5) it is easy to find the highest-weight state 

lp O)hw = p 0 O) = lo k p).$/O 0 o), (3.6) 

When the operators S, and Tq act on I(x) S Ms TMT) ,  only Ms and M T  are possibly 
changed. The matrix elements of S, and T4 are known as the same in 0 3 ( S )  and 
03( T ) .  When VqIq2 operate on the state I(x) S Ms TMT),  the quantum numbers S, T 
and ( x )  are changed. So when Vq,¶: acts repeatedly on the highest-weight state lp 0 O)hw, 
we obtain the states with different S and different T in  ( p  0 0). From the Wigner-Eckart 
theorem we only need to calculate the reduced matrix elements ( ( x ’ )  S‘ T‘)I Vl l (x )  S T )  
of v4142: 

( (x ’ )  s’ Mk T‘ M‘,! v q l y 2 1 ( x )  SMS TMT)  

= [ (2S ’+  1)(2T‘+ l)]-”’(S Ms 1 q1 IS’ Mk)( T M ,  1 q2 1 T’ M k )  

x ( (x ’ )  S’ T’ II VI1 ( X I  S T) .  (3.7) 

Notice that 

(3.8) 
and we have 

Define 
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We obtain the recursion formulae between states with different S and T 

{ V l ( x )  S T ) } ~ I ~ ~ = ~ = [ ( 2 S - 1 ) ( 2 T + 3 ) ] - ” 2  

x ( ( x )  s- 1 T +  111 Vll(X) s T) I (x )  s -  1 s -  1 T +  1 T +  1) (3.10) 
s-1 T-I { v ~ ( x )  ST)},-, T - r - = [ ( 2 ~ - 1 ) ( 2 ~ - 1 ) ] - 1 ’ 2  

x ( ( x + 2 ) S - l  T - l / ( V / I ( x ) S T ) l ( x + 2 ) S - l  S - 1  T-1 T-1). (3.11) 

The coefficients 

[ (2S-1)(2T+3)]-”2((x)  S - 1  T+lIIVll(x) S T )  

and 

[ (2S-1)(2T-l)]-’’2((X+2) s - 1  T - l ~ ~ V ~ ~ ( x )  S T )  

can be treated as the normalised constants of the states I(x) S - 1 S - 1 T +  1 T +  1) and 
I(x + 2) S - 1 S - 1 T - 1 T - 1) respectively. Starting from the highest-weight state 
lp 0 O)hw,  using the recursion formulae we can calculate every I(x) S S  T T )  state in 
( p  00). By mathematical induction we get the states 

I(x) s s T T )  = c 4 x 1  s, T, 8)lx - 8 s S),IS T 77, x = 0 ,2 ,4 , .  . . (3.12) 

(3.13) 

The reduction rule according to the group chain 0 6 ( S  T )  2 O,(S) x O,( T )  can be 
obtained from (3.13) and (3.14): 

(3.16) 

so ( p  0 0) is simply reduced. 
The eigenvalue of the Casimir operator in I R  ( p  0 0) is 

hw(p o 0 1 c ~ ~ ~ 1 ~  o o ) ~ ,  = P ( p  + 4). (3.17) 

For example, the highest-weight state of I R  (1 0 0) is 

11 0 O),, = I(0) 1 1 0 0) = 10 1 1),10 0 O)?.  

((0) 0 1 I1 Vtl(0) 1 0) = ((0) 1 011 VIl(0) 0 1) = 3. 

The non-zero reduced matrix elements of V are 
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The states with S = M s  = 0 and T = MT = 1 is 

/ ( o )  o o 1 I )  = -ilO o o ) ~ ~ o  1 I ) ~ .  

In IR (1 0 0) there are only two states with (S T )  = (1 0) and (S T )  = (0  1 ). 

4. The isoscalar factors (ISF) of 06(1)  x 0,(2) O6 

Consider two independent systems with 06( 1) and 0 6 ( 2 )  symmetry respectively. The 
generators are S,( i), T,(i) and V,,,,( i) for 06( i), i = 1,2. These two systems form a 
coupled system with 0, symmetry. The generators of O6 are 

s, = Sq(1)+S,(2) Tq = T,(1)+ Tq(2)  Vw72 = V,I¶2(1) + V d 2 )  (4.1) 

Suppose the states 

I ki (i:) si M s i  Ti MTi 

form a basis of the r, representation space of O,( i) and 

r 1 k (x) S MS T M T  

form a basis of the I' representation space of 06. Then the ISF 

of 06( 1) x OJ2) 2 O,(S T) 2 0 3 ( S )  x 03( T )  are defined as 

1 k (ij(IZT MT 

where 

(4.2) 

(4.3) 

In this paper we only discuss the ISF with r l  = ( p  0 0) and r2 = (1 0 0). From 0 3 
we know that in ( p  0 0 )  and (1 0 0) representation spaces the states 
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form an orthonormal basis and the degenerate quantum numbers ki are not needed. 
Then formulae (4.2) and (4.3) are simplified to 

The states 

also from an orthonormal basis for O,( 1) x 0 6 ( 2 )  3 06. Then we get 

We notice that the right-hand side of (4.6) is independent of Ms and MT.  

example, it is convenient to choose the ( p  10)  basis 
In general we need not choose an orthonormal basis for representation space. For 

1 k (x)(:L:TMT ) 
which are normalised but are not orthogonal for different k. Of course they are still 
orthogonal for different S, Ms,  T and MT.  So we introduce a metric tensor ( p v )  in 
the subspace of r with definite S and T :  

(4.7) 

Suppose ( p v )  is the inverse of ( p v ) .  Then the identity operator in r representation 
space can be written as 

(4.8) 
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Using (4.4), (4.5) and (4.8) we obtain the recursion formula of the ISF 

where the { } terms are 6-j  symbols. The ISF satisfy the normalisation condition 

When is a totally symmetric representation, we have 

( P j j )  = ( p ” )  = I. 
The recursion formula (4.9) is simplified to 

(4.10) 

(4.11) 

(4.9’) 

Suppose the direct product ( p  0 0) x (1 0 0) can be decomposed to the direct sum 
of irreducible representations ( p l  p2 p3):  

(4.12) 
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The highest-weight state of ( p l  p2 pJ) is Ip, p2 p 3 ) h w .  Using (3.5), (3.13), (3.14) and 
(4.1) we obtain 

(4.13) 

i.e. S = Ms = p1 and T =  MT = p 2  for lpl p2 
lpl p2 O h w  satisfying 

From (4.9) we obtain the ISF of 

X = O  

where p : = p l + l ,  pU;=p2+1 or p.I=pl+l,  p ; = p 2  or p i = p l ,  p ; = p 2 + 1 .  
It is proved there are three and only three independent solutions of (4.14): 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 
Using the recursion formula (4.9) we obtain the ISF of ( p  + 1 0 0) and ( p  - 1 0 0) from 
(4.15) and (4.16). The results are given in table 1. Where x+S+ T = p + l ,  x =  
0,2,4, .  . . for ( p  + 1 0 0) and x = 2,4, .  . . for ( p  - 1 0 0). 

5. Representations and ISF of <p 10)  

Notice that the states 

form an orthonormal basis of ( p  0 0) x (1 0 0). From (4.18) and the results of 0 3 we 
get the decomposition rule of ( p  1 0) to (S T )  as 
( p  IO )= (p  l ) + ( p - l 2 )  + ( p - 2 3 )  + . . . + ( I F )  

( p  O ) + ( p - 1  l ) ’+(p-22)’+ .  . . + ( l  p - l ) ’ + ( O p )  
+ ( p  - 1 0) + ( p  - 2 1)2 +. . . + (1 p - 2 ) ’ +  (0 p - 1) 

( p  - 2  0) +. . .+ (1 p -3)2+ (0 p -2) 
+. . . 

+ ( l o )  +(01) .  
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The superscripts 2 of ( S  T) indicate that ( p  1 0) includes states with ( S  T )  twice. We 
use a degenerate quantum number for distinguishing the two states 

We also have x + S -t T = f i  + 1. But in ( p  1 0), x can be even or odd. 
When x = 0, ( p  0 0) x (1 0 0) is reduced to the singlet states 

(0) s O ) )  T 
of ( p  10). Considering the states 

( P  1 0 )  = [L]"* 
( 0 ) S T  p i 1  

( 5 . 2 )  

When ,y is odd, ( p  0 0) x (1 0 0) can only be reduced to ( p  1 0) . By suitable choice of 
the phase factors, we obtain the ISF in table 2. In this case the states 

I k (,'_"bdod', S T) 

are orthonormal and p,, = p" = 6,. In table 2 we see that when T = 0 or S = 0: 
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So there are only singlet states 

I:&;:)o) Or 

I k ( x  Feiey)  s T ) 

for T = 0 or S = 0, respectively. 

states 
When x is even and non-zero, the ISF are also given in table 1. In this case, the 

are normalised but are not orthogonal for different k: 

ST(2S+,y + 1)(2T +x + 1) 
P 1 2 = P 2 1 = ( S + T f 2 ) (  W ( x , S ,  T ) W ( x ,  T , S )  

(5.4) 

where 

W (  X, S, T )  = S( 2 T + 1 )( S + T + 2 )  + X (  T + 1 )( 2p  + 4 - x ) .  
Using the above ISF we get the reduced matrix elements of V from (4.9) and (4.9’). 

The results are given in tables 3 and 4. Then we obtain the explicit matrix elements 
of generators in the I R  ( p  10) .  
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